بررسی اثر پارامترهای اقلیمی بر تغییر غلظت ذرات معلق کم‌تر از 10 میکرومتر و ارتباط آن با رخداد فرسایش بادی در مناطق خشک

نویسندگان

1 دانشگاه جیرفت

2 سازمان تحقیقات، آموزش و ترویج کشاورزی تهران

چکیده

یکی از علل اصلی آلودگی هوا در مناطق خشک جهان و به‌ویژه در ایران، وقوع توفان‌های گردوغبار حاوی غلظت بالای ذرات معلق با قطر آئرودینامیکی کم‌تر از 10 میکرومتر (PM10) است. هدف اصلی تحقیق حاضر، شناسایی مهم‌ترین عوامل اقلیمی مؤثر بر تغییر غلظت PM10 در نزدیکی دشت یزد- اردکان و ارتباط آن با رخداد فرسایش بادی در بازه‌ی زمانی 2012 تا 2017 است. بدین منظور از متوسط ماهیانه‌ی داده‌های اقلیمی، غلظت روزانه‌ی ذرات کوچک‌تر از 10 میکرومتر و داده‌های ساعتی مربوط به پدیده‌های مختلف گردوغبار ایستگاه سینوپتیک یزد استفاده شد. جهت شناسایی دقیق‌ترین رابطه‌ بین پارامترهای هواشناسی و غلظت PM10، 10 تابع رگرسیون دومتغیره (لگاریتمی، معکوس، توانی، نمایی، درجه‌ دو، درجه‌ سه، منحنی رشد، ترکیبی، لجستیک و منحنی S) بر اساس چهار معیار ضریب همبستگی، آماره‌ی F، میزان خطای نسبی و میانگین مربعات خطا با یکدیگر مقایسه گردید. درنهایت از طریق تحلیل ارتباط بین شاخص توفان گردوغبار و PM10، نقش رخداد فرسایش بادی بر تغییرات آن موردبررسی قرار گرفت. نتایج نشان داد که در این بازه‌ی زمانی هیچ رابطه‌ی خطی معنی‌داری بین پارامترهای هواشناسی و غلظت ذرات معلق وجود نداشته است؛ درحالی‌که بین مقادیر متوسط درجه حرارت ماهیانه و درجه حرارت بیشینه با PM10 رابطه‌ی غیرخطی معنی‌داری برقرار شده است. مقادیر مربوط به ضریب همبستگی، آماره‌ی F، خطای نسبی و مجذور میانگین مربعات خطا بر اساس دقیق‌ترین تابع غیرخطی بین PM10 و متوسط درجه حرارت ماهیانه به ترتیب 67/0، 06/8، 1/0، 09/0 برآورد گردید. مقادیر مربوط به این پارامترها بر اساس درجه حرارت بیشینه به ترتیب 65/0، 3/7، 11/0 و 08/0 تخمین زده شد. همچنین نتایج نشان داد که 24% افزایش غلظت ذرات معلق در سال‌های اخیر به دلیل وقوع رخداد فرسایش بادی بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Climatic parameters Effect on the Concentration Change of Particles Matter less than 10 μm and its Relation to Wind Erosion Occurrence in Arid Regions

نویسندگان [English]

  • Zohre Ebrahimikhusfi 1
  • Fatemeh Dargahian 2
1
2
چکیده [English]

Introduction
Sand and dust storms mainly occur in arid and semi-arid areas of the world. One of the main causes of air pollution in the desert provinces of the country, especially Yazd province, is the occurrence of dust storms containing high concentrations of suspended particles with an aerodynamic diameter of less than 10 μm (PM10) which their severity and frequency have increased over the past and had adverse effects on the health of the people. The meteorological parameters such as surface winds speed, relative humidity, temperature and rainfall are the most important factors affecting the emission rate of these particles. Accordingly, the main objectives of this study are to investigate the trends of PM10 concentration during the six-year statistical period (2012-2017), to identify the most important meteorological parameters affecting the concentration of these particles and to determine its relationship with the occurrence of wind erosion based on Dust Storm Index (DSI).
Materials and Methods
In this study, meteorological data related to the prevailing wind speed, maximum wind speed, relative humidity, average monthly temperature, maximum temperature, minimum temperature and precipitation values of Yazd synoptic station and daily amounts of suspended particulate matter were less than 10 μm obtained from relevant organizations. Then, the average PM10 concentrations were calculated at the monthly, seasonally and annually time scales, and the trend of temporal changes were investigated. In order to determine the kind of relationship between meteorological parameters and PM10 concentration, 10 functions of bivariate regression functions (linear, logarithmic, inverse, power, exponential, quadratic, Cubic, growth curves, compound, logistic and curve S) were used. Using the four criteria of correlation coefficient, F-Statistic, error estimation and root-mean-square error were determined the most accurate function and the most important factor influencing the trend of temporal changes of PM10 concentrations. Finally, the dust storm index was calculated and its correlation with the mean values of PM10 was determined.
Discussion and Results
The highest concentrations of particulate matter were in April (145.57 µg/m3), spring (120.77 µg/m3) and 2015 (129.83 µg/m3). There was no significant linear relationship between the studied meteorological parameters and the concentrations of suspended particles (P value> 0.05), but there were significant nonlinear relationships between the mean monthly temperature and maximum temperature with the concentrations of suspended particles in the study area (P value<0.05). The most accurate nonlinear relationship, correlation coefficient, F statistic, estimation error, and mean square error in establishing regression relations between monthly average temperature and suspended particle concentration were curve S, 0.67, 0.86, 0.1, 0.09 and in the relationship between the maximum temperature and the suspended particle concentration, the curves S, 0.65, 7.3, 0.11and 0.08, respectively. According to the obtained determination coefficient by the bivariate regression analysis between PM10 and DSI, 24% of the annual changes in particle concentration were due to increased activity of sand and dust events over the study period, the most of which was caused by changes of variables in summer season (38%). These results may indicate the intensification of desertification due to the wind erosion phenomenon in summer and especially in recent years. According to the results of this study, the main cause of these changes was the average temperature fluctuations of Yazd city during these years. Given that the most important source of these particles is the Yazd-Ardakan plain which is located in the northwest of the study area, it is expected that the bulk of these particles originated from this critical center.
Conclusions
The highest concentrations of particulate matter were in April (145.57 µg/m3), spring (120.77 µg/m3) and 2015 (129.83 µg/m3). There was no significant linear relationship between the studied meteorological parameters and the concentrations of suspended particles (P value> 0.05), but there were significant nonlinear relationships between the mean monthly temperature and maximum temperature with the concentrations of suspended particles in the study area (P value<0.05). The most accurate nonlinear relationship, correlation coefficient, F statistic, estimation error, and mean square error in establishing regression relations between monthly average temperature and suspended particle concentration were curve S, 0.67, 0.86, 0.1, 0.09 and in the relationship between the maximum temperature and the suspended particle concentration, the curves S, 0.65, 7.3, 0.11and 0.08, respectively. According to the obtained determination coefficient by the bivariate regression analysis between PM10 and DSI, 24% of the annual changes in particle concentration were due to increased activity of sand and dust events over the study period, the most of which was caused by changes of variables in summer season (38%). These results may indicate the intensification of desertification due to the wind erosion phenomenon in summer and especially in recent years. According to the results of this study, the main cause of these changes was the average temperature fluctuations of Yazd city during these years. Given that the most important source of these particles is the Yazd-Ardakan plain which is located in the northwest of the study area, it is expected that the bulk of these particles originated from this critical center.

کلیدواژه‌ها [English]

  • Desertification
  • Suspended Particle
  • climate change
  • Wind erosion
  • Arid Regions
Ashpole I, Washington R. (2013). A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking. J Geophys Res 118:6981–6995. doi:10.1002/jgrd.50554. Azimzadeh, H. R., Ekhtesasi, M. R., Refahi, H. G., Rohipour, H., & Gorji, M. (2008). Wind erosion measurement on fallow lands of Yazd-Ardakan plain, Iran. Desert, 13(2), 167-174. Chai, T., Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific model development 7, 1247-1250. Das, G. (2000). Hydrology and Soil Conservation Engineering Prentice-Hal of India Press, 489p. Daryanoosh, M., Goudarzi, G., Rashidi, R., Keishams, F., Hopke, P.K., Mohammadi, M.J., Nourmoradi, H., Sicard, P., Takdastan, A., Vosoughi, M. (2018). Risk of morbidity attributed to ambient PM10 in the western cities of Iran. Toxin Reviews 37, 313-318. Faraji, M., Pourpak, Z., Naddafi, K., Nodehi, R.N., Nicknam, M.H., Shamsipour, M., Rezaei, S., Ghozikali, M.G., Ghanbarian, M., Mesdaghinia, A. (2018). Effects of airborne particulate matter (PM10) from dust storm and thermal inversion on global DNA methylation in human peripheral blood mononuclear cells (PBMCs) in vitro. Atmospheric Environment 195, 170-178. Gautam, S., Patra, A.K., Sahu, S.P., Hitch, M. (2018). Particulate matter pollution in opencast coal mining areas: a threat to human health and environment. International Journal of Mining, Reclamation and Environment 32, 75-92. Islami, A., Attafar, Z., Pirashab, M and Asadi, F. (2014). Investigation of the process of changes in suspended particle concentration and determination of air quality index in Kermanshah city from 2005 to 2012, Journal of Sanitary Engineering, Shahid Beheshti University of Medical Sciences, Faculty of Health, Volume 2, Issue 1, pp. 28-19. Jassim, M.S., Coskuner, G., Munir, S. (2018). Temporal analysis of air pollution and its relationship with meteorological parameters in Bahrain, 2006–2012. Arabian Journal of Geosciences 11, 62. Jury, W.A., Stolzy, L.H. (2018). Soil physics, Handbook of Soils and Climate in Agriculture. CRC Press, pp. 131-158. Miri, M., Jamshidi, S., Derakhshan, Z., Gholizadeh, A., Karimi, H., Amanalikhani, S., Hashemi, S.Y. (2016). Spatial analysis and source identification of particulate matter (PM10) in Yazd city. Journal of Community Health Research 5, 45-56. Modarres, R., Sadeghi, S. (2018). Spatial and temporal trends of dust storms across desert areas of Iran. Natural Hazards 90, 101-114. Munir, S. (2016). Modelling the non-linear association of particulate matter (PM 10) with meteorological parameters and other air pollutants—a case study in Makkah. Arabian Journal of Geosciences 9, 64. Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, G., Sehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric Environment 173, 265-276. Shahsooni, A., Yar-Ahmadi, M., Mosadaghinia, A., Younesian, M., Jafarzadeh, N., Naeemabadi, A.S., Nadafi, K. (2012). Analysis of the trend of entering dust to Iran with an emphasis on Khuzestan province, Journal of Hakim Research 15, 192-202. Sharafi, K., Khosravi, T., Moradi, M., Pirsaheb, M. (2015). Air quality and variations in PM10 pollutant concentration in Western Iran during a four-year period (2008–2011), Kermanshah–a case study. Journal of Engineering Science and Technology 10, 47-56. Stix, J., de Moor, J.M., Rüdiger, J., Alan, A., Corrales, E., D'Arcy, F., Diaz, J.A., Liotta, M. (2018). Using drones and miniaturized instrumentation to study degassing at Turrialba and Masaya volcanoes, Central America. Journal of Geophysical Research: Solid Earth 123, 6501-6520. Tan, S.-C., Li, J., Che, H., Chen, B., Wang, H. (2017). Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010. Atmospheric Environment 148, 316-328. Wang, P., Cao, J., Tie, X., Wang, G., Li, G., Hu, T., Wu, Y., Xu, Y., Xu, G., Zhao, Y. (2015). Impact of meteorological parameters and gaseous pollutants on PM2. 5 and PM10 mass concentrations during 2010 in Xi’an, China. Aerosol and Air Quality Research 15, 1844-1854. O’Loingsigh, T., G.McTainsh, E. Tews, C. Strong, J. Leys, P. Shinkfield and N. Tapper. (2014). The Dust Storm Index (DSI): a method for monitoring broadscale wind erosion using meteorological records. Aeolian Research 12: 29-40.