آنالیز وضعیت بیلان منابع آب زیرزمینی به منظور بررسی تنش واردشده بر آبخوان در مناطق خشک

نویسندگان

1 دانشگاه کاشان

2 دانشگاه تهران

چکیده

با توجه به خشک‌سالی‌های اخیر و کاهش ریزش­های جوی، برداشت­های بی­رویه از منابع آب زیرزمینی و فشار بر آبخوان­ها افزایش یافته است. در این مطالعه به بررسی وضعیت تغذیه و تخلیه­ی آبخوان اصفهان-برخوار پرداخته شده است. این امر به مدیریت بلندمدت آبخوان می­انجامد و موجب تصمیم­گیری مناسب توسط برنامه­ریزان می­شود. با بررسی­های صورت­گرفته و با رسم آبنمود آبخوان موردنظر مشخص گردید که سطح تراز ایستابی در طول دوره‌ی آماری منتخب به‌طور دائم سیر نزولی دارد و به ازای هر سال، معادل 46/0 متر سطح آب سفره کاهش یافته که بیان­کننده­ی این واقعیت است که آبخوان در شرایط بحرانی به سر می­برد. در این مطالعه با استفاده از مدل سه‌بعدی آب زیرزمینی تفاضل محدود MODFLOW در حالت پایدار، میزان تغذیه توسط سه عامل نشت از رودخانه، نفوذ از بارندگی و تغذیه توسط پساب آبیاری کشاورزی تعیین گردید و ضریب همبستگی بالای 97 درصد نشان‌دهنده‌ی دقت بالای شبیه­سازی بود. با توجه به نتایج به‌دست‌آمده، مشخص شد که از کل میزان تغذیه توسط بارش و پساب کشاورزی، بیش‌ترین سهم مربوط به پساب آبیاری کشاورزی بوده است (حدود 32 درصد کل آب آبیاری) که این امر به دلیل نوع آبیاری در منطقه (آبیاری از نوع کرتی) بوده و پس‌ازآن، نفوذ از طریق بارش صورت می­گیرد (حدود 10 درصد کل حجم بارندگی دشت) که سهم کم­نفوذ از این بخش به دلیل نرخ بالای تبخیر در سطح منطقه است. بدین ترتیب، می­توان نتیجه گرفت که مهم‌ترین منبع تغذیه‌ی آبخوان، پساب ناشی از آبیاری کشاورزی است که لازم است در مطالعات مدل­سازی هیدروژئولوژیکی منطقه به‌طور دقیق با توجه به نوع محصول، نوع آبیاری، ویژگی­های خاک و شرایط آب و هوایی محدوده‌ی مطالعاتی محاسبه گردد. در محدوده‌ی مطالعاتی اصفهان-برخوار با توجه به کاهش مداوم سطح تراز آب زیرزمینی که در آبنمود آبخوان به‌وضوح مشهود است و نیز بیلان منفی منابع آب زیرزمینی، امکان توسعه‌ی بهره­برداری از آبخوان وجود ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the balance of groundwater resources in order to study the stress on the aquifer in arid areas

نویسندگان [English]

  • Seyed Hassan Alavinia 1
  • Seyed Javad Sadatinejad 2
  • arash malekiyan 2
  • Hoda Ghasemieh 1
1
2
چکیده [English]

In this study the recharge and discharge of Isfahan-borkhar aquifer was investigated. This leads to long-term management of the aquifer and will make appropriate decisions by planners. The results of this study showed that the water table was constantly decreasing over the selected statistical period. The water table level was reduced by 0.46m per year, which reflects the fact that the aquifer is in critical conditions. In the present study, the recharge rate was determined by three factors including leakage from the river, rainfall infiltration and agricultural wastewater by using MODFLOW and then the correlation coefficient above 0.97% indicated high accuracy of the simulation. According to the results, it was found that recharge by agricultural wastewater is more than recharge by rainfall (about 32% of total irrigation water), which is due to the type of irrigation in the area (check-basin irrigation) and after that the influence of rainfall (about 10% of the total rainfall), which is a low contribution to this area due to high evaporation rates in the region. Thus, it can be concluded that the most important source of aquifer recharge is agricultural wastewater, which is necessary to be accurately calculated according to the type of product, irrigation, soil characteristics and climatic conditions of the study area in hydrological modeling studies. In case study of Isfahan-Borkhar, there is no possibility of exploitation of the aquifer due to the continuous decrease of the water table of groundwater that is clearly evident in the aquifer hydrograph, as well as the negative balance of groundwater resources.

کلیدواژه‌ها [English]

  • Groundwater
  • Modeling
  • MODFLOW
  • Isfahan-Borkhar Aquifer
Al-Hassoun, Saleh A., and Thamer Ahmed Mohammad, (2011). "Prediction of water table in an alluvial aquifer using modflow." Petranika J. Sci. & Technol 19, no. 1: pp. 45-55. Alley, William M., et al. "Flow and storage in groundwater systems." science 296.5575: pp. 1985-1990. Alley, W.M., Healy, R.W., LaBaugh, J.W. and Reilly, T.E., (2002). Flow and storage in groundwater systems. science, 296(5575), pp.1985-1990. Anderson, M. P., & Woessner, W. W. (1992). Applied ground water modeling: Simulation of flow and advective transport. Academic Press. Inc., New York, NY. Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied groundwater modeling: simulation of flow and advective transport. Academic press. Berhanu, Belete, Yilma Seleshi, and Assefa M. Melesse, (2014). "Surface water and groundwater resources of Ethiopia: potentials and challenges of water resources development." In Nile River Basin, pp. 97-117. Springer, Cham. Bredehoeft, J., (2005). The conceptualization model problem—surprise. Hydrogeology journal, 13(1), pp.37-46. Carrera-Hernandez, J. J., & Gaskin, S. J. (2006). The groundwater modeling tool for GRASS (GMTG): open source groundwater flow modeling. Computers & Geosciences, 32(3), 339-351. Chenini, I., & Mammou, A. B. (2010). Groundwater recharge study in arid region: an approach using GIS techniques and numerical modeling. Computers & Geosciences, 36(6), pp. 801-817. Dieleman, P. J., & Trafford, B. D. T. (1980). Drainage design factors: 28 questions and answers based on the expert consultation on drainage design factors Rome, 22-29 October 1979. Fitts, C. R. (2002). Groundwater science. Elsevier. Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote sensing of environment, 80(1), pp. 185-201. Gleeson, T., Alley, W. M., Allen, D. M., Sophocleous, M. A., Zhou, Y., Taniguchi, M., & VanderSteen, J. (2012). Towards sustainable groundwater use: setting long‐term goals, backcasting, and managing adaptively. Groundwater, 50(1), pp. 19-26. Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process (pp. 6-A16). Reston, VA: US Department of the Interior, US Geological Survey. Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW-2000, The U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-file Report. U. S. Geological Survey, (92), 134. Hashemi, H., Berndtsson, R., Kompani-Zare, M., & Persson, M. (2013). Natural vs. artificial groundwater recharge, quantification through inverse modeling. Hydrology and Earth System Sciences, 17(2), pp. 637-650. Hill, M. C., & Tiedeman, C. R. (2007). Effective groundwater model calibration with analysis of data, sensitivities, and uncertainty. Hiscock, K. M., Rivett, M. O., & Davison, R. M. (2002). Sustainable groundwater development. Geological Society, London, Special Publications, 193(1), 1-14. Højberg, A. L., & Refsgaard, J. C. (2005). Model uncertainty–parameter uncertainty versus conceptual models. Water Science and Technology, 52(6), pp. 177-186. Kowsar, A. (1992). Desertification control through floodwater spreading in Iran. Unasylva (FAO). Malik, V. S., Singh, S. K., & Singh, R. K. (2012). Application of “Processing MODFLOW for Windows (Pmwin)” for sustainable ground water resources study for Gurgaon District, Haryana, India. International Journal of Engineering Science and Technology, 4(9), pp. 3988-4002. McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model (Vol. 6, p. A1). Reston, VA: US Geological Survey. Mukherjee, S., (1996). Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur-Kanpur, India. Hydrogeol. J, 19, pp.53-64. Poeter, E., & Anderson, D. (2005). Multimodel ranking and inference in ground water modeling. Groundwater, 43(4), pp. 597-605. Rojas, R., Kahunde, S., Peeters, L., Batelaan, O., Feyen, L., & Dassargues, A. (2010). Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling. Journal of Hydrology, 394(3-4), pp. 416-435. Shukla, S., & Jaber, F. H. (2006). Groundwater recharge from agricultural areas in the flatwoods region of south Florida. University of Florida. IFAS Fact Sheet ABE370 EDIS Web Site at http://edis. ifas. ufl. edu. United Nations. World Population Prospects: 2012 Revision Population Database online. http://www.un.org/esa/population/unpop.htm, 2012. [Accessed on 19th July 2013]. Xu, X., Huang, G., Qu, Z., & Pereira, L. S. (2011). Using MODFLOW and GIS to assess changes in groundwater dynamics in response to water saving measures in irrigation districts of the upper Yellow River basin. Water resources management, 25(8), pp. 2035-2059. Yang, Q., Lun, W., & Fang, Y. (2011). Numerical modeling of three-dimension groundwater flow in Tongliao (China). Procedia Engineering, 24, pp. 638-642.