شبیه‌سازی اثرات تغییر اقلیم بر رواناب تحت سناریوی RCP با استفاده از مدل SWAT (مطالعه‌ی موردی: حوضه‌ی رودخانه‌ی میناب)

نویسندگان

1 دانشگاه آزاد اسلامی تهران

2 دانشگاه خوارزمی تهران

چکیده

اثرات تغییر اقلیم بر منابع آب به‌عنوان موضوعی چالش‌برانگیز در بسیاری از مناطق خشک دنیا مطرح بوده و تداوم این پدیده در مناطق خشک با مخاطراتی در چرخه‌ی آبی و بی‌نظمی جریان رودخانه‌ها همراه بوده است. نتایج خروجی‌های 6 مدل اقلیمی سری مدل‌های CMIP5 تحت سناریوهای RCP با استفاده از روش آماری و نرم‌افزار CCT بر اساس گزارش پنجم هیئت بین‌الدول تغییر اقلیم نشان می‌دهد که دمای بیشینه‌ و کمینه‌ در آینده و تا سال 2099 در تمام مدل‌های اقلیمی به‌طور مداوم روند افزایشی دارد، اما افزایش دمای کمینه، بیش‌تر از افزایش دمای بیشینه‌ خواهد بود. در مورد بارش، پیچیدگی‌ها زیاد و عدم قطعیت را بیان می‌کند، اما بیش‌تر مدل‌های اقلیمی کاهش بارندگی را در حوضه‌ تخمین می‌زنند. شبیه‌سازی رواناب با ابزار ارزیابی آب‌وخاک (SWAT) انجام شد و برای واسنجی و اعتبارسنجی مدل نیز از نرم‌افزار SWAT-CUP و الگوریتم SUFI-2 استفاده شد. نتایج مقایسه‌ی هیدروگراف‌های مشاهداتی و شبیه‌سازی و شاخص‌های آماری ارزیابی، بیانگر کارایی مناسب مدل در شبیه‌سازی دبی حوضه‌ است. میانگین رواناب آینده­ی حوضه‌ی تحت سناریوهای RCP2.6، RCP4.5 و RCP8.5 روند کاهشی داشته و نسبت به دوره‌ی مشاهداتی آن به ترتیب 1/39، 3/40 و 4/40 درصد افت آبدهی خواهد داشت؛ بنابراین با کاهش دبی حوضه‌، احتمال رخداد فراوانی خشک‌سالی در آینده قابل‌انتظار است.

کلیدواژه‌ها


عنوان مقاله [English]

Impacts of climate change on streamflows under RCP scenarios: A case study in Minab River basin, Hormozgon of IRAN

نویسندگان [English]

  • farshad javadizadeh 1
  • parvize Kardavani 1
  • Behlool Alijani 2
  • Farideh Asadian 1
1
2
چکیده [English]

Introduction Researchers often examine hydro-climatological processes via Global Circulation Model (GCM) and hydrological model, which have been shown to benefit water resources management and prediction, especially at the basin scale. Climate change poses water resource challenges for many already water stressed watersheds throughout the world(Ercan et al., 2020:53; Aryal et al., 2018:1). As per the IPCC report, the global temperature may increase by 1 °C to 5 °C by the end of the century (Bajracharya et al., 2018). Climate scenarios for both Global climate model (GCM) or simple analog models are often adapted to examine the effect of climate change on hydrology (Fereidoon and Koch, 2018). Hydrological models or rainfall-runoff models are essential for understanding the hydrological processes of river basins and supporting operational management of water resources characterized with large spatial and temporal variability (Tuo et al., 2016). The Soil and Water Assessment Tool (SWAT) was used for a future projection of changes in the hydrological regime of the basin based on Representative Concentration Pathways Scenarios (RCP) (Bajracharya et al., 2018).
Materials and methods The minab basin is one of the main sources of water supply to the Bandar Abbas. Minab basin is located in the east of  Hormozgan and north of Minab. The basin area is 10605 square kilometers.The basin has a hot desert climate, according to the extended demartern classification system.In this study, daily meteorological data from 1985 to 2018 including maximum temperature, minimum temperature, rainfall, relative humidity of 8 selected stations in the study area were obtained from the National Meteorological Organization (IRIMO) and discharge data 3 hydrometric stations Brentin Minab located at the exit the basin was prepared as a base station from 1985 to 2018 by the Ministry of Energy. Spatial data includes digital elevation model (DEM) data, runoff  network information, soil type, and landuse. In this study, 6 different climate models have been used under RCP2.6, RCP4.5   and RCP8.5  scenarios, including GFDL-ESM2M, HadGEM2-ESM, IPSL-CM5A-MR, MIROC-ESM, NorESM1-ME and CanESM2. The Minab basin simulation uses the SWAT model, which is a distributed and physical hydrological model that is often used to evaluate management decisions and climate change on hydrological processes. The main inputs of the SWAT model include the information layers of the Digital Elevation Model (DEM), the soil layer and the land use layer, and the input microclimate variables of the SWAT model include daily precipitation, maximum temperature ,minimum temperature and discharge. The parameters of sensitivity analysis, calibration and validation with SWAT- tool and using SUFI2 program as one of the algorithms in SWAT-CUP software were determined and their sensitivity and uncertainty were estimated using this program. Statistical indicators have been considered for evaluating rainfall, temperature and discharge outputs.
Discussion and Results Results and evaluations of 6 climatic models and in all three scenarios, RCP2.6 RCP4.5 and RCP8.5 to predict the future temperature and precipitation of Minab basin, it is stated that in all models and climatic scenarios, the temperature of Minab basin is constantly increasing until 2099, and the rate of increase in the minimum temperature will occur more than the increase in the maximum temperature in the future; about precipitation, the predictions are complex and uncertain, but in most models, the predicted amount of precipitation will be less than the observed value.The results of the influence of different climatic scenarios on the parameters of the Minab River regime indicate that is calculated the average of discharg under RCP2.6 scenario is equal to 5.2 cubic meters per second and in RCP4.5 scenario is equal to 5.08 and finally in RCP8.5 scenario is equal to 5.07 cubic meters. Therefore, it is inferred that discharge will have a decreasing trend compared to its observation period in the next period, and in the scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively, will be followed by 39.1%, 40.3% and 40.4% of the discharge drop. Due to the future runoff values ​​of the basin, it seems that the Minab River will be affected by climate change and its discharge will drop by about 40%.
Conclusion The evaluation results of climate models under RCP scenarios show that the maximum and minimum temperatures will continue to increase continuously in all climate models in the future, but the increase in the minimum temperature is greater than the increase in the maximum temperature. In the case of precipitation, complexity is high and uncertainty is expressed, but in all three scenarios, a decrease in future rainfall is indicated. The SWAT model is a hydrological model used to estimate the future discharge of the basin. The results of the numerical index of performance evaluation of the model under RCP climatic scenarios in simulating the runoff of Minab basin in the hydrometric station of Brentin Minab indicate the appropriate efficiency of the model in simulating runoff of Minab basin. The results of the studies show that the average future runoff of the basin has a decreasing trend, which will have a decrease of 39.1, 40.3 and 40.4%, respectively, compared to its observation period. Therefore, under all RCP scenarios, the average discharge of the basin will decrease in the future, and the probability of frequent droughts occurring with a longer duration than the observation period is expected.
 

کلیدواژه‌ها [English]

  • climate change
  • RCP Scenarios
  • Hydrology
  • SWAT model
  • Minab river basin
Apurv, T., Mehrotra, R., Sharma, A., Goyal, M. K., & Dutta, S. (2015). Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. Journal of hydrology, 527, 281-291. Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73-89. Aryal, A., Shrestha, S., & Babel, M. S. (2018). Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theoretical and Applied Climatology, 135(1-2), 193-209. Bajracharya, A. R., Bajracharya, S. R., Shrestha, A. B., & Maharjan, S. B. (2018). Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Science of the Total Environment, 625, 837-848. Bhatta, B., Shrestha, S., Shrestha, P. K., & Talchabhadel, R. (2019). Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena, 181, 104082. Buytaert, W., Vuille, M., Dewulf, A., Urrutia, R., Karmalkar, A., & Célleri, R. (2010). Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrology and Earth System Sciences, 14(7), 1247. Du, X., Shrestha, N. K., & Wang, J. (2019). Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Science of the Total Environment, 650, 1872-1881. Duan, Z., Tuo, Y., Liu, J., Gao, H., Song, X., Zhang, Z., . . . Mekonnen, D. F. (2019). Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. Journal of hydrology, 569, 612-626. Ercan, M. B., Maghami, I., Bowes, B. D., Morsy, M. M., & Goodall, J. L. (2020). Estimating Potential Climate Change Effects on the Upper Neuse Watershed Water Balance Using the SWAT Model. JAWRA Journal of the American Water Resources Association, 56(1), 53-67. Fereidoon, M., & Koch, M. (2018). SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Science of the Total Environment, 630, 502-516. Golmohammadi, G., Rudra, R., Dickinson, T., Goel, P., & Veliz, M. (2017). Predicting the temporal variation of flow contributing areas using SWAT. Journal of hydrology, 547, 375-386. Gonzalez, P., Neilson, R. P., Lenihan, J. M., & Drapek, R. J. (2010). Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography, 19(6), 755-768. Guo, T., Mehan, S., Gitau, M. W., Wang, Q., Kuczek, T., & Flanagan, D. C. (2018). Impact of number of realizations on the suitability of simulated weather data for hydrologic and environmental applications. Stochastic Environmental Research and Risk Assessment, 32(8), 2405-2421. Im, S., Brannan, K. M., Mostaghimi, S., & Kim, S. M. (2007). Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction. Journal of Environmental Science and Health, Part A, 42(11), 1561-1570. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., . . . Woollen, J. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3), 437-472. Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kværner, J., . . . Rossi, P. (2014). Climate change impacts on groundwater and dependent ecosystems. Journal of hydrology, 518, 250-266. Laiti, L., Mallucci, S., Piccolroaz, S., Bellin, A., Zardi, D., Fiori, A., . . . Majone, B. (2018). Testing the hydrological coherence of high‐resolution gridded precipitation and temperature data sets. Water Resources Research, 54(3), 1999-2016. López-Moreno, J., Vicente-Serrano, S., Moran-Tejeda, E., Zabalza, J., Lorenzo-Lacruz, J., & García-Ruiz, J. (2010). Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrology & Earth System Sciences Discussions, 7(2), 2561-2681. Marin, M., Clinciu, I., Tudose, N. C., Ungurean, C., Adorjani, A., Mihalache, A. L., . . . Cacovean, H. (2020). Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environmental Research, 109330. Mishra, Y., Nakamura, T., Babel, M. S., Ninsawat, S., & Ochi, S. (2018). Impact of climate change on water resources of the Bheri River Basin, Nepal. Water, 10(2), 220. Mohammed, I. N., Bomblies, A., & Wemple, B. C. (2015). The use of CMIP5 data to simulate climate change impacts on flow regime within the Lake Champlain Basin. Journal of Hydrology: Regional Studies, 3, 160-186. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L.(2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. J. Amer. Soc. Agric. Biol. Engin. 50: 3. 885-900. Moss, R., Babiker, W., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., . . . Hibbard, K. (2008). Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies: Intergovernmental Panel on Climate Change Secretariat IPCC). Ndhlovu, G., & Woyessa, Y. (2020). Modelling impact of climate change on catchment water balance, Kabompo River in Zambezi River Basin. Journal of Hydrology: Regional Studies, 27, 100650. Nilawar, A. P., & Waikar, M. L. (2019). Impacts of climate change on streamflow and sediment concentration under RCP 4.5 and 8.5: A case study in Purna river basin, India. Science of the Total Environment, 650, 2685-2696. Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C., & Makeschin, F. (2012). Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of hydrology, 414, 413-424. Tan, M. L., Yusop, Z., Chua, V. P., & Chan, N. W. (2017). Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmospheric Research, 189, 1-10. Tuo, Y., Duan, Z., Disse, M., & Chiogna, G. (2016). Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Science of the Total Environment, 573, 66-82. Venkataraman, K., Tummuri, S., Medina, A., & Perry, J. (2016). 21st century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management. Journal of hydrology, 534, 300-316. Wang, R., & Kalin, L. (2018). Combined and synergistic effects of climate change and urbanization on water quality in the Wolf Bay watershed, southern Alabama. Journal of Environmental Sciences, 64, 107-121. WINCHEL, M. (2013). ARCSWAT Interface for SWAT2012. User’s guide. Blackland Research and Extension Center, Texas Agrilife Research, 720 East Blackland Road, Temple, Texas 76502. Grassland. Soil And Water Research Laboratory Usda Agricultural Research Service808 East Blackland Road-Temple, Texas, 76502. Wu, J., Miao, C., Zhang, X., Yang, T., & Duan, Q. (2017). Detecting the quantitative hydrological response to changes in climate and human activities. Science of the Total Environment, 586, 328-337. Zhang, Y., You, Q., Chen, C., & Ge, J. (2016). Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmospheric Research, 178, 521-534. Zhou, J., He, D., Xie, Y., Liu, Y., Yang, Y., Sheng, H., Zou, R. (2015). Integrated SWAT model and statistical downscaling for estimating streamflow response to climate change in the Lake Dianchi watershed, China. Stochastic Environmental Research and Risk Assessment, 29(4), 1193-1210.