تحلیل خشک‌سالی‌های محلی و منطقه‌ای ایران با استفاده از تئوری گردش‌ها و شاخص بارش استانداردشده (SPI)

نویسندگان

دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

هدف اصلی این پژوهش، بررسی ویژگی‌های مختلف خشک‌سالی‌های محلی و منطقه‌ای ایران بر اساس تئوری گردش‌ها و شاخص بارش استانداردشده‌ (SPI) است؛ بنابراین جهت رسیدن به این هدف، داده‌های بارش سالانه‌ی 63 ایستگاه همدید برای یک دوره‌ی 30 ساله (2015-1986) از سازمان هواشناسی ایران دریافت شد. نخست بر اساس تئوری گردش‌ها و شاخص SPI ویژگی‌های خشک‌سالی‌‌های محلی و منطقه‌ای همچون درازای زمانی، کمبود تجمعی و شدت آن‌ها استخراج شدند. تشخیص و تفکیک خشک‌سالی‌‌های منطقه‌ای مبتنی بر آستانه‌ی فضایی بحرانی 30 و 50 درصد از مجموع مساحت ایران انتخاب شدند و بر این اساس، ویژگی‌های خشک‌سالی‌ ایران برای هر دو مقیاس با یکدیگر بررسی شدند. در مقیاس محلیِ پایشِ خشک‌سالی‌‌ها با استفاده از تئوری گردش‌ها مشاهده شد که این روش برای مناطقی با وسعت زیاد و دارای اقلیم‌های مختلف در مقایسه با شاخص SPI نمی‌تواند بسیار مناسب باشد. در مقیاس منطقه‌ای نیز نشان داده شد که استفاده از تئوری گردش‌ها با آستانه‌ی فضایی 30 درصد، ترکیب مناسبی برای پایش خشک‌سالی‌‌های منطقه‌ای ایران نمی‌باشند، لذا در مقایسه بین دو آستانه‌ی فضایی 30 و 50 درصد کاملاً آشکار شد که آستانه‌ی فضایی 50 درصد برای تئوری گردش‌ها و شاخص SPI آستانه‌ی مناسبی برای پایش خشک‌سالی‌های منطقه‌ای ایران است. از دیگر نتایج این مطالعه می‌توان به این مهم اشاره داشت که درازی زمانی خشک‌سالی‌‌ها در دوره‌ی اول نسبت به دوره‌ی دوم کوتاه‌تر بوده است و در مورد شدت خشک‌سالی‌‌ها به نظر می‌رسد شدت خشک‌سالی‌ها در دوره‌ی دوم (2015-2001) نسبت به دوره‌ی اول (2000-1986) کاهش داشته باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing Iran’s Local and Regional Droughts Using the Theory of Runs and Standardized Precipitation Index (SPI)

نویسندگان [English]

  • Zivar Balouchi
  • Peyman Mahmoudi
  • Mohsen Hamidianpour
چکیده [English]

The primary objective of the present study is the investigation of the various properties of Iran’s local and regional droughts based on the theory of runs and standardized precipitation index (SPI). Thus, in order to accomplish this goal, the annual precipitation data of 63 synoptic stations were procured from Iran’s meteorological organization for a 30-year period (1986-2015).. First, based on the theory of runs and SPI index, local and regional drought characteristics such as duration, cumulated deficit and their severity were extracted.. Detection and separate of regional droughts based on critical spatial threshold were selected 30 and 50% of the total area of Iran, and based on this, the characteristics of Iranian drought for both scales were examined together. In local scale, the droughts were monitored using the theory of runs and it was found out that this method cannot be an appropriate one for regions featuring high vastness and various climates in comparison to SPI. It was also shown in regional scale that the use of the theory of runs with areal threshold of 30% of the total area under drought cannot make up a suitable combination for monitoring Iran’s regional droughts. Thus, in a comparison between the two areal thresholds of 30% and 50%, it was figured out that the 50% areal threshold is a good one for the theory of runs and SPI for monitoring Iran’s regional droughts. Another result of this study is that the duration of droughts in the first period was shorter than the second period.. As for the intensity of the droughts, it seems that the intensity of the droughts is lower in the second half (2001-2015) as compared to the first half (1986-2000).

کلیدواژه‌ها [English]

  • Thiessen Polygon
  • duration of the droughts
  • cumulated deficit of droughts
  • intensity of droughts
  • areal threshold
  • climate change
Almedeij, J. (2014). Drought analysis for Kuwait using Standardized Precipitation Index. Sci. World J. 2014, 1-9. Bergman, K. H., Sabol, P., Miskus, D. (1988). Experimental indices for monitoring global drought conditions. in Proceedings of the 13th Annual Climate Diagnostics Workshop, pp. 190–197, U.S. Dep. of Commer., Cambridge, Mass. Bhalme, H. N., Mooley, D. A. (1980). Large-scale droughts/floods and monsoon circulation. Mon. Weather Rev., 108, 1197–1211. Blumenstock, G., Jr. (1942). Drought in the United States analyzed by means of the theory of probability. Tech. Bull. 819, U.S. Dep. Agric., Washington, D. C. Byun, H. R., Wilhite, D. A. (1999). Objective quantification of drought severity and duration. J. Clim., 12, 2747–2756. Cancelliere, A, Rossi, G., Ancarani, A. (1996). Use of Palmer index as a drought indicator in Mediterranean regions. In: Proc. IAHR Con! From Flood to Drought, Sun City, South Africa. Chopra, P. (2006). Drought risk assessment using remote sensing and GIS: a case study of Gujarat. M.Sc. thesis, Indian Institute of Remote Sensing, Dehradun, India. Daneshmand, H., Mahmoudi, P. (2017). Estimation and Assessment of Temporal Stability of Periodicities of Droughts in Iran. Water Resour. Manage., 31, 3413–3426. Dracup, J. A., Lee, K. S., and Paulson Jr, E. G., (1980). On the definition of droughts. Water Resour. Res., 16, 297–302. Guenang, G. M., Kamga, F. M. (2014(. Computation of the Standardized Precipitation Index (SPI) and its use to assess drought occurrences in Cameroon over recent decades. J. Appl. Meteorol. Clim. 53 (10), 2310-2324. Guerrero-Salazar, P., Yevjievich, V. (1975). Analysis of Drought Characteristics by the Theory of Runs. Hydrology Paper Nr. 80, Colorado State University, Fort Collins, CO. Hagman, G. (1984). Prevention better than cure: report on human and natural disasters in the third world. Swedish Red Cross, Stockholm, Sweden. Heim, R. R., Jr. (2002). A review of twentieth-century drought indices used in the United States, Bull. Am. Meteorol. Soc., 83, 1149–1165. Huang, J., H. Dool, V. D., Georgakakos, K. P., (1996). Analysis of model-calculated soil moisture over the United States (1931–93) and application to long-range temperature forecasts. J. Clim., 9, 1350–1362. Kao, S.-C., Govindaraj, R. S. (2010). A copula-based joint deficit index for droughts. J. Hydrol., 380(1–2), 121–134. Keyantash, J., Dracup, J. A., (2002). The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc., 83, 1167–1180. Kogan, F. N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc., 76(5), 655–668. Kogan, F. N. (1997). Global drought watch from space. Bull. Am. Meteorol. Soc., 78, 621–636. Lee, S-H., Yoo, S-H., Choi, J-Y., Bae, S. (2017). Assessment of the Impact of Climate Change on Drought Characteristics in the Hwanghae Plain, North Korea Using Time Series SPI and SPEI: 1981–2100. Water, 9(8), 507. Livada, I., Assimakopoulos, V. (2007). Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 89 (3-4), 143–153. Liu, W. T., Kogan, F. N. (1996). Monitoring regional drought using the vegetation condition index, Int. J. Remote Sens., 17, 2761–2782. Mahfouz, P., Mitri, G., Jazi, M., Karam, F. (2016). Investigating the temporal variability of the Standardized Precipitation Index in Lebanon. Clim. 4(2): 1-14. Mahmoudi, P., Rigi, A., Miri Kamak, M. (2019). A comparative study of precipitation-based drought indices with the aim of selecting the best index for drought monitoring in Iran. Theor Appl Climatol 137, 3123–3138. Mahmoudi, P., Hamidian Pour, M., Sanaei, M., Daneshmand, N. (2019). Investigating the Trends of Drought Severity Changes in Iran. In: Proceedings of International Conference on Climate Change, Impacts, Adaptation and Mitigation, 11 June, Kharzmi University, Tehran, Iran. McKee, T. B., Doesken, N. J., Kleist, J. (1993). The relationship of drought frequency and duration to time scale. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184. McKee, T. B., Doesken, N. J., Kleist, J. (1995). Drought monitoring with multiple time scales. Preprints, Ninth Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 233–236. McGuire, J. K., Palmer, W. C. (1957). The 1957 drought in the eastern United States. Mon. Weather Rev., 85, 305–314. McQuigg, J. (1954). A simple index of drought conditions. Weatherwise, 7, 64–67. Michaelides, S., Pashiardis, S. (2008). Monitoring drought in Cyprus during the 2007-2008 hydrometeorological year by using the standardized precipitation index (SPI). Eur. Water, 23/24, 123-131. Modarres, R. 2007. Streamflow drought time series forecasting, Stochastic Environ. Res. Risk Assess., 21(3), 223–233. Mondol, M. A. H., Ara, I., Das, S. C. (2017). Meteorological drought index mapping in Bangladesh using Standardized Precipitation Index during 1981-2010. Adv. Meteorol. 2017, 1-17. Moye, L. A., Kapadia, A. S., Cech, I. M., Hardy, R. J. (1988). The theory of runs with applications to drought prediction. J. Hydrol., 103(1-2), 127-137. Munger, T. T. (1916). Graphic method of representing and comparing drought intensities. Mon. Weather Rev., 44, 642–643. Palmer, W. C. (1965). Meteorological drought. Res. Paper No. 45, 768 Weather Bureau, Washington, D. C. Palmer, W. C. (1968). Keeping track of crop moisture conditions, nationwide: The new crop moisture index, Weatherwise, 21, 156–161. Paulo, A. A., Pereira, L.S. (2006). Drought Concepts and Characterization (Comparing Drought Indices Applied at Local and Regional Scales). Water Int., 31(1), 37-49. Paulo, A. A., Pereira, L.S., Matias, P.G., Rossi, G., Cancelliere, A. (2000). Characterisation of droughts: Local indices and regional analysis. In: Proc. 3rd Inter Regional Conference on Environment-Water: Water Resources Management in the 21st Century, Budapest: 161 - 168. Rossi, G., Benedini, M., Tsakiris, G., Giakoumis, S. (1992). On regional drought estimation and analysis. Water Res. Manag., 6, 249-277. Santos, M. A., (1983). Regional droughts: a stochastic characterization. J. Hydrol., 66,183-211. Santos, M. A., Correia, F. N., Rodrigues, R., (1988). Risk assessment of regional droughts. In: F. Siccardi and R. L. Bras (Eds.) Natural Disasters in European Mediterranean Countries, U. S. Nat. Sci. Foundation and Nat. Res. Council, Italy, 333-350. Shafer, B. A., Dezman, L. E., (1982). Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In Preprints, Western Snow Conference, pp. 164–175, Colo. State Univ., Reno, Nev. Tate E. L., Gustard A. (2000). Drought Definition: A Hydrological Perspective. In: Vogt J.V., Somma F. (eds) Drought and Drought Mitigation in Europe. Advances in Natural and Technological Hazards Research, vol 14. Springer, Dordrecht. Thornthwaite, C. W. (1931). The climate of North America according to a new classification. Geogr. Rev., 21, 633–655. Türkeș, M., Tatli, H. (2009). Use of the Standardized Precipitation Index (SPI) and a modified SPI for shaping the drought probabilities over Turkey. Int. J. Climatol. 29 (15), 2270-2282. van Rooy, M. P. (1965). A rainfall anomaly index independent of time and space, Notos, 14, 43. Waggoner, M. L., O’Connell , T. J. (1956). Antecedent precipitation index. Weekly Weather Crop Bull., XLIII, 6–7. Wilhite, D. A., Glantz, M. H., (1987). Understanding the drought phenomenon: the role of definitions. In: D. A. Wilhite, W. E. Easterling and D. A Wood (Eds .) Planning for Drought, Toward a Reduction of Societal Vulnerability. Westview Press, Boulder, 13-27. Yuan, X., Jian, J., Jiang, G. (2016). Spatiotemporal variation of precipitation regime in China from 1961 to 2014 from the Standardized Precipitation Index. ISPRS Int. J. Geo-Inf, 5(11): 1-18.