مقایسه‌ی مدل‌های ریزمقیاس‌نمایی LARS-WG و SDSM در پیش‌بینی تغییرات دما و بارش تحت سناریوهایRCP

نویسندگان

1 دانشگاه کاشان

2 مرکز تحقیقات آموزش کشاورزی و منابع طبیعی اراک

چکیده

روش‌های مختلفی برای تبدیل داده‌های بزرگ‌مقیاس به داده‌های اقلیمی منطقه‌‌ای گسترش یافته‌اند که در کم‌تر مطالعه‌ای نتایج این روش‌ها از لحاظ آماری مورد مقایسه قرار گرفته است. هدف از این مطالعه‌، مقایسه‌ی نتایج مدل‌های SDSM و LARS-WG در ریزمقیاس‌نمایی داده‌های خروجی مدل‌های گردش عمومی CANE-SM2 و HADGEM2-ES تحت سناریوهایRCP2.6 ، RCP4.5 وRCP8.5 است. جهت انجام این مطالعه‌، دمای حداقل، دمای حداکثر و بارش در دوره‌ی پایه (2005-1980) ایستگاه سینوپتیک اراک مورداستفاده قرار گرفت و نتایج حاصل از پیش‌بینی‌های دو مدلSDSM و LARS-WG برای سه دوره‌ی 2040-2021، 2060-2041 و 2080-2061 مقایسه شد. به‌ منظور ارزیابی عملکرد مدل‌ها شاخص‌های RMSE، R2، MAE و NSE استفاده شد. بر اساس نتایج شاخص‌های ارزیابی، هر دو مدل کارآیی مناسبی در شبیه‌سازی متغیرهای اقلیمی دارد. نتایج ریزمقیاس‌نمایی دو مدل نشان داد که به‌طورکلی در هر سه سناریو و هر سه دوره‌ از ماه ژانویه تا ژوئن مقادیر پیش‌بینی دمای حداقل و دمای حداکثر نسبت به دوره‌ی پایه افزایش می‌یابد و مدل LARS-WG در مقایسه با مدل SDSM مقدار دمای حداقل و حداکثر را نسبت به دوره‌ی پایه بیش‌تر برآورد نموده است. تغییرات بارش پیش‌بینی‌شده به ‌وسیله‌ی دو مدل SDSM و LARS-WG دارای روند مشخصی نبوده است. بررسی درصد تغییرات داده‌های دما و بارش نشان داد که خروجی مدل SDSM تغییرات بیش‌تری را در بارش و خروجی مدل LARS-WG تغییرات بیش‌تری را در دمای حداقل و دمای حداکثر نسبت به دوره‌ی پایه نشان می‌دهد. بر اساس نتایج این مطالعه‌ نمی‌توان برتری دقیقی برای هر یک از مدل‌های موردمطالعه‌ بیان کرد، ولی به‌طورکلی می‌توان گفت که نتایج پیش‌بینی دو مدل در اکثر موارد از نظر آماری اختلاف معنی‌دار (01/0P<) دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of LARS-WG and SDSM Downscaling Models for Prediction Temperature and Precipitation Changes under RCP Scenarios

نویسندگان [English]

  • zohreh zoheyri 1
  • reza ghazavi 1
  • ebrahim omidvar 1
  • aliakbar Davudi_rad 2
چکیده [English]

Various methods developed to convert large-scale data to regional climatic data. In few studies , the results of these methods have been statistically compared. The main purpose of this study was to compare SDSM and LARS-WG models for Downscaling output data of CANE-SM2 and HADGEM2-ES general circulation models under RCP2.6, RCP4.5 and RCP8.5 scenarios. For this study, precipitation, minimum and maximum temperature of Arak synoptic station were used as the base period (1980-2005). The results of the predictions of the SDSM and LARS-WG models were compared for three periods (2021-2040, 2041-2060 and 2061-2080). The RMSE, R2, MAE and NSE criteria were used to evaluate the performance of SDSM and LARS-WG models. Based on the results of the evaluation criteria, both models have an acceptable resuts in simulation of climate variables. Downscaling results of both models showed that minimum and maximum temperatures should increased compare to baseline in all scenarios and periods from January to June, but LARS-WG model had a over estimation compared to the SDSM model. Changes in predicted precipitation by SDSM and LARS-WG models did not have a clear trend. According to the results, the SDSM model shows more changes in precipitation, wherase, the LARS-WG model shows more changes in minimum and maximum temperature compared to the base period. Based on the results of this study, it is not possible to determine the exact superiority of each of the models, But SDSM model had a better prediction for precipitation and maximum temperature, while, LARS model had better results for maximum and minimum temperature.in general it can be said that the prediction results of both models are statistically significant (P<0.01) in most cases.

کلیدواژه‌ها [English]

  • climate change
  • general circulation models
  • Downscaling
  • Global warming
  • Arak
Aghashahi, M. A., & Nicksokhan, M. MH and Tahmasebi, B. 2012. Introduce and compare the LARS-WG model and the SDSM in order to fine-scale environmental modeling studies of climate change. In the Sixth National Conference and Exhibition of Environmental Engineering, Tehran (Vol. 10). Baghanam, A.H., Nourani, V., Sheikhbabaei, A., Seifi, A.J. (2019). Statistical Downscaling and Projection of Future Temperature Change for Tabriz City.1813. Bajracharya, A.R., Bajracharya, S.R., Shrestha, A.B., Maharjan, S.B. (2018). Climate change impact assessment on the hydrological regime of the Kaligandaki Basin Nepal, Science of the Total Environment. 625, pp 837-848. Dunning, C. M., Black, E., Allan, R. P. (2018). Later wet seasons with more intense rainfall over Africa under future climate change, Journal of Climate, Volume 31, Issue 23, pp 9719-9738. Egeru, A., Barasa, B., Nampijja, J., Siya, A., Makooma, M.T., Majaliwa, M.G.J. (2019). Past, present and future climate trends under varied representative concentration pathways for a sub-humid region in Uganda, Climate, Volume 7, and Issue 3.P 35. Hajjarpour, A., Yousefi, M., Kamkar, B. (2014). Precision test of simulators LARS-WG, WeatherMan and CLIMGEN in three different climates simulated (Gorgan, Gonbad and Mashhad), Geography and Development, University of of Sistan and Baluchestan, Volume 35, pp 201-216. Hassan, Z.,Shamsudin,S.,Harun,S. (2014).Application of SDSM and LARS-WG for Simulating and Downscaling of Rainfall and Temperature, Theoretical and Applied Climatology, Volume 116, Issue 1–2, pp 243–57. Khadka, D., Pathak, D. (2016). Climate Change Projection for The Marsyangdi River Basin, Nepal Using Statistical Downscaling of GCM and Its Implications in Geodisasters, Geoenvironmental Disasters , Volume 3, Issue1, p 15. King, L. M., Irwin, S., Sarwar, R., McLeod, A. I. A., & Simonovic, S. P. (2012). The effects of climate change on extreme precipitation events in the Upper Thames River Basin: a comparison of downscaling approaches. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 37(3), 253-274. Masimba, O., Gumindoga, W., Mhizha, A., Rwasoka, D.T. (2019). An assessment of baseline and downscaled projected climate variables in the Upper Manyame sub-catchment of Zimbabwe, Physics and Chemistry of the Earth, p102788. Mohamadlu, M., Haqizadeh, A., Zeinivand, H., Tahmasebipur, N. (2016). Assessment ofclimate change impacts on trend changes of temperature & precipitation in Baranduzchai basin west Azarbaijan using AOGCM, Journal of geographical space.Volume 56, Issue 16, pp 151-168. Nuri, A. Z., Farzaneh, M., Espanayi, K. (2014). Assessment of climatic parameters uncertainty under effect of different downscaling techniques, International Research Journal of Applied and Basic Sciences, Volume 8, Issue 9, pp225-838. Prudhomme, C., Reynard, N., Crooks, S. (2002). Downscaling of global climate models for flood frequency analysis: where are we now?. Hydrological processes, Volume 16, Issue 6, pp 1137-1150. Rasouli, A.A., Rezaeibanafsheh, M., Msah Bovany, AR., Khorshiddoust, A. M., Qermzcheshmeh, B. (2014). Investigation Impact of Morpho-Climatic Parameters on Aaccuracy of LARS-WG Model. Journal of Science and Watershed Engineering, Volume 8, Issue 24, pp 9-18. Shamsipoor, A.A. (2013). Climate modeling theory and methods. Tehran University Press. P294. (In Persian) Tan, M.L., Yusop, Z., Chua, V.P., Chan, N.W. (2017). Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin. Malaysia, Atmospheric Research, 189. pp1-10. Tatsumi, K., Oizumi, T., & Yamashiki, Y. (2013). Introduction of daily minimum and maximum temperature change signals in the Shikoku region using the statistical downscaling method by GCMs. Hydrological Research Letters, 7(3), 48-53. Vallam, P., Qin, X. S. (2018). Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes, Theoretical and Applied Climatology, Volume 134, Issue 1-2, pp 669-688. Wilby, R.L., Dawson, C.W., Barrow, E.M. (2002). SDSM-a decision suport tool for the assessment of regional climate change impacts, Environmental Modelling & Software, Volume 17, Issue 2, pp145-157. Zhang, Y., You, Q., Chen, C., Ge, J. (2016). Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin. China, Atmospheric Research, 178, pp521-534. Zickfeld, K., Solomon, S., Gilford, D.M. (2017). Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases, Proc. Natl. Acad. Sci. USA 2017. 114. pp 657–662.