انتخاب بهترین مدل تغییر اقلیم در برآورد متغیرهای هواشناسی ایستگاه سینوپتیک بیرجند

نویسندگان

دانشگاه بیرجند

چکیده

امروزه تغییر آب‌وهوا یکی از دلایل اصلی نگرانی‌های مرتبط به آب است. علت این امر آن است که امکان دارد این تغییر سبب خشک‌سالی یا سیلاب‌های شدید، کوتاه و طولانی‌مدت در آینده شود. در این تحقیق سعی شد بهترین مدل GCM از بین مدل‌های تغییر اقلیم به‌منظور تعیین دمای کمینه، دمای بیشینه و بارش برای ایستگاه سینوپتیک بیرجند در دوره‌های آتی مشخص شود. بدین منظور تعداد 35 مدل GCM برای هریک از متغیرهای دمای کمینه، دمای بیشینه و بارش تعیین شد و با نتایج ایستگاه سینوپتیک بیرجند مقایسه گردید. نتایج نشان داد که مدل‌ NorESM1-M به دلیل دارا بودن مقدار RMSE برابر 091/0 و مدل GISS-E2-R نیز با دارا بودن مقدار PBIAS پایین می‌تواند مدل انتخابی مناسب برای تحقیقات در مورد بارش باشد. در مورد دمای بیشینه و دمای کمینه نیز به ترتیب مدلGISS-E2-R  با مقدار RMSE برابر 664/0 و مدل CSIROMKMK3.6با داشتن مقادیر RMSE برابر 778/0 بیش‌ترین شباهت را به داده‌های ایستگاه سینوپتیک بیرجند دارد. از مقایسه‌ی داده‌های مدل-ها با داده‌‌ی ایستگاه سینوپتیک، بیش‌ترین درصد خطای نسبی مقادیر بارش، دمای کمینه و دمای بیشینه به ترتیب برای ماه‌های اول (ژانویه)، دوم (فوریه) و پنجم (می) مشخص شده است. همچنین در مقایسه‌ی قطعیت مدل‌های GCM، متغیرهای بارش، دمای بیشینه و دمای کمینه به ترتیب در ماه‌های پنجم (می)، سوم (مارس) و اول (ژانویه) نسبت به بقیه‌ی ماه‌ها کم‌ترین قطعیت را دارند. 

کلیدواژه‌ها


عنوان مقاله [English]

The selection of the best from climate change model in the estimation of climatology variables for east region of the country by use fifth report data

نویسندگان [English]

  • Mostafa Yaghoobzadeh
  • َAbbas Khashei
  • Yousef Ramazeni
  • Seyyedeh Atefeh Hosseini
چکیده [English]

Climate change is nowadays a major cause of concern in water related fields because it may cause more severe, shortened or prolonged droughts or floods in the future. In this research was tried to the best model of climate change is determined from the climate change models to determining the minimum temperature, maximum temperature and precipitation for the Birjand synoptic station. For this reason, 35 models of GCM were determined for each of variables of the minimum temperature, maximum temperature and precipitation. Initially, for each of the weather variables, the values ​​of each of the fifth report models for the base period and the synoptic station of Birjand were determined and compared with the results of the synoptic station in Birjand. Results showed that the rainfall data of GISS-ES-R, CNRM-CM5, CSIROMKMK3.6 models are most similar to the data of the Birjand synoptic station. For maximum temperature, GISS-ES-R, CNRM-CM5, CSIROMKMK3.6 models and for the minimum temperature, the GISS-ES-R, GFDLCM3 and MIROC-ESM models have the minimum error values and results of these models had the best similarity with the observed data. From comparison of model data with synoptic station data showed that the highest percentage of relative error of rainfall, minimum temperature and maximum temperature is shown for 1(January), 2(February) and 5(May) months, respectively. In comparing the differences between GCM models and Birjand station data for precipitation, the maximum temperature and minimum temperature are the fifth (May), third (March) and first (January) months, respectively, than the rest of the months.
 

کلیدواژه‌ها [English]

  • GCM MODEL
  • climate change
  • Precipitation
  • Minimum temperature
  • maximum temperature
Akhavan, S., Abedi Koupaee, J., Mousavi , S.F., Abbaspour , K., Afyuni , M. and Eslamian, S.S. )2010). Estimation of Blue Water and Green Water Using SWAT Model in Hamadan-Bahar Watershed, Journal of Science and Technology of Agriculture and Natural Resources, 14(53), 9-23. Almazroui, M., Islam, N., Saeed, F., Alkhalaf. A.k.and Dambul, R. (2017). Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula, Atmospheric Research, 194, 202-213. Fung, C. F., Lopez, A., New, M. (2011). Modelling the impact of climate change on water resources. John Wiley & Sons. Gregory, J.M., Church, J.A., Boer, G.J., Dixon, K.W., Flato, G.M., Jackett, D.R., Lowe, J.A., Farrell, S.P., Roeckner, E., Russell, G.L., Stouffer R. J. and Winton, M. (2001). Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Climate Dynamics, 18, 225-240. Houghton, J.T., Meira, F.L.G., Callander, B.A., Harris, N., Kattenberg, A. and Maskell, K. (1995). Climate Change 1995, Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge. IPCC, (Intergovernmental Panel on Climate Change), (2007). The physical science basis. In:Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 996. IPCC, (2013). The physical science basis. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Jana, B. K. and Majumder, M. (2010). Impact of climate change on natural resource management. Springer Science & Business Media.‌ Meeh, G.A., Covey, C., Taylor, K.E., Delworth, T., Stouffer, R.J., Latif, M., McAvaney, B. and Mitchell, J.F.B. (2007). TheWCRP CMIP3 multi model dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88 (9), 1383–1394. Saeed, F., Hagemann, S. and Jacob, D. (2012). A framework for the evaluation of South Asian summer monsoon in a regional climate model applied to REMO. Int. J. Climatol. 32, 430–440. Samadi S.Z. Sagareswar, G., and Tajiki M. (2010). Comparison of General Circulation Models: methodology for selecting the best GCM in Kermanshah Synoptic Station, Iran. Int. J. Global Warming, 2(4), 347-365. Su, B., Huang, J., Gemmer, M., Jian, D., Tao, H., Jiang, T. and Zhao, C. (2016). Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmos. Res. 178–179, 138–149. Weinberger, K.R., Haykin, L., Eliot, M.N., Schwartz, J.D., Gasparrini, A., and Wellenius, G.A. (2017). Projected temperature-related deaths in ten large U.S metropolitan areas under different climate change scenarios, Environment International, 107, 196–204.