بررسی تأثیر اقلیم بر تغییرات پوسته‌های نمکی با استفاده از سنجش‌ازدور (مطالعه‌ی موردی: پوسته‌های نمکی پلایای سبزوار)

نویسندگان

1 گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد

2 گروه مدیریت مناطق خشک و بیابانی، دانشکده منابع طبیعی و محیط زیست، دانشگاه فردوسی مشهد

3 گروه زمین شناسی، دانشکده علوم پایه، دانشگاه فردوسی مشهد.

چکیده

در این مطالعه، پنج سری از تصاویر سنسورهای لندست ازجمله MSS، TM، ETM + و OLI در فواصل زمانی نابرابر در دوره‌ی 42 ساله بین سال‌های 1973 تا 2015 به منظور بررسی تغییرات فضایی و زمانی پوسته‌های نمکی در پلایای سبزوار واقع در ایران مرکزی، موردبررسی قرار گرفت. تصاویر ماهواره‌ای لندست و مدل رقومی ارتفاعی  SRTMتهیه و مورد تجزیه‌وتحلیل قرار گرفتند. نتایج با استفاده از مشاهدات میدانی و 8 نقطه‌ی کنترل زمینی و آزمایش کانی‌شناسی پراش اشعه‌ی ایکس مورد ارزیابی مجدد قرار گرفت. بر اساس تفاوت اختلاف بین بازتاب گروه‌های طیفی قابل‌مشاهده و مادون قرمز نزدیک (NIR)، یک روش قابل‌اطمینان به نام شاخص اختلاف استانداردشده‌ی نمک  NDSI به منظور تمایز پوسته‌های نمکی در نظر گرفته شد. نتایج نشان داد که پوسته‌های نمک در طول دوره‌ی 42 ساله بین 15٪ تا 35٪ در تغییر بوده‌اند و این تغییرات بر مورفولوژی پلایا تأثیرگذار بوده است. بخش‌های غربی و جنوبی پلایا، بیش‌ترین گسترش سطوح نمکی را در تمام تصاویر نشان داده است. آنالیز کانی‌شناسی پراش اشعه‌ی ایکس نیز در این مناطق نشان از غالب بودن کانی هالیت دارد که خود حاکی از فرآیند رو به افزایش تبخیر و کاهش آب‌های زیرزمینی در منطقه‌ی موردمطالعه در سال‌های اخیر است. درنهایت، رابطه‌ی معنادار مثبت بین گسترش پوسته‌های نمک و میانگین دما در ماه‌های مرداد طی پنج دوره‌ی متوالی (R = 0.624) برآورد شد. این نتیجه بیانگر گسترش پوسته‌های نمکی در دماهای بسیار بالا در طی زمان در منطقه‌ی موردمطالعه است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the Effects of Climate Change on Salt Crusts Using Remote Sensing (A Case Study of Sabzevar Playa)

نویسندگان [English]

  • Maliheh Pourali 1
  • Adel Sepehr 2
  • Mohamad Hosein Mahmudy Gharaie 3
چکیده [English]

In this study, five sequences of Landsat sensors including MSS, TM, ETM+ and OLI at unequal intervals spanning 42 years between 1973 and 2015, were analyzed to investigate the spatial and temporal variation of salt crusts in Sbzevar playa, central Iran. Landsat satellite imageries and ASTER digital elevation model were prepared, and spatial-temporal analyses were carried out in ENVI and GIS. Furthermore, results were evaluated using field observations and ground sampling. Based on reflectance differences between the visible and near-infrared (NIR) bands Normalized Differential Salinity Index (NDSI) was considered to discriminate the salt crusts. The results revealed that the salt crusts were relatively varied over a 42-year time window between 15% to 35%. The western and southern parts of playa had the most distribution of salt crusts on all imageries. The main mineral of ground samples in these parts of playa was halite indicating dominant evaporate process. Finally, a positive, meaningful relationship between salt crust’s expansion and mean temperature on August months was estimated during five temporal sequences (R=0.624). This result indicated that salt crusts could be expanded on very hot temperatures in the study area.

کلیدواژه‌ها [English]

  • NDSI
  • X-ray diffraction
  • Landsat
  • Sabzevar
  • playa
Abrahams AD, Parsons AJ (1994). Geomorphology of Desert Environments, 1st ed. Champan and Hall, London. 674 p. Ahmadi H (1998). Applied geomorphology, soil erosion. Publication of University of Tehran. Tehran, pp 580 (In Persian). Allbed A, Kumar M (2013). Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Advances in Remote Sensing, 2: 373-385. Bowler JM (1986). Spatial variability and hydrologic evolution of Australian lake basins: analogue for Pleistocene hydrologicchange and evaporite formation. Palaeogeography, Palaeoclimatology, Palaeoecology 54: 21- 41. Briere PR (2000). Playa, Playa-lake, Sabkha: Proposed definitions for old terms. Journal Arid Environments, 45: 1-7. Canton Y, Sole-Benet A, Lazaro R (2003). Soil-geomorphology relations in gypsiferous materials of the Teberans Desert (Almaria, SE Spain). Geoderma 115: 193-222. Csillag F, Pásztor L, Biehl LL (1993). Spectral band selection for the characterization of salinity status of soils. Remote Sens. Environ. 43: 231-242. Dewidar KM, Frihy OE (2010). Automated techniques for quantification of beach change rates using Landsat series along the North-eastern Nile Delta, Egypt. Journal of Oceanography and Marine Science, 1(2): 28-39. El Asmar HM, Hereher ME (2011). Change detection of the coastal zone east of the Nile Delta using remote sensing. Environmental Earth Sciences, 62(4): 769-777. Eldeiry AA, Garcia LA (2008). Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing. Soil Sci. Soc. Am. J. 72(1): 201-211. Elnaggar AA, Noller JS (2009). Application of remote- sensing data and decision-tree analysis to mapping salt- affected soils over large areas. Remote Sensing 2(1): 151-165. Geological Survey of Iran (2005). Geological sheets of 7262 (Abbas-Abad), 7362 (Davarzan), 7462 (Bashtin), and 7562 (Sabzevar), Scaled at 1:100,000. Glennie KW (1978). Desert sedimentary environments. In: R. W. Fairbridge, J. Bourgeois (eds.), the Encyclopedia of Sedimentology. Dowden, Hutchinson and Ross, Stroudsburg, 247-251. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25(15): 1965-1978. Iranian Meteorological Organization (2015). Climatic data of Sabzevar Synoptic Station (1957–2017). http://www.irimo.ir. Accessed 2015 Kalra NK, Joshi DC (1996). Potentiality of Landsat, SPOT and IRS satellite imagery, for recognition of salt affected soils in Indian Arid Zone. Int. J. Remote Sens. 17(15): 3001-3014. Kearey P (2009). The Encyclopedia of the Solid Earth Sciences. John Wiley and Sons, pp 736. Khan NM, Rastoskuev VV, Sato Y, Shiozawa S (2005). Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77(1): 96-109. Khan NM, Rastoskuev VV, Shalina EV, Sato Y (2001). Mapping salt-affected soils using remote sensing indicators—a simple approach with the use of GIS IDRISI. Paper presented at the 22nd Asian Conference on Remote Sensing 5: 9. Krinsley DB (1970). A geomorphological and paleoclimatological study of the playas of Iran. Geological survey of United States Department of Interior, Washington DC, pp 320. Li J, Menenti M, Mousivand A, Luthi SM (2014). Non-Vegetated Playa Morphodynamics Using Multi-Temporal Landsat Imagery in a Semi-Arid Endorheic Basin: Salar de Uyuni, Bolivia. Remote Sensing, 6: 10131-10151. Lulla K, Duane Nellis M, Rundquist B (2013). The Landsat 8 is ready for geospatial science and technology researchers and practitioners. Geocarto International, 28: 191. Metternicht G, Zinck JA (1997). Spatial discrimination of salt- and sodium-affected soil surfaces. Int. J. Remote Sens. 18: 2571-2586. Metternicht G, Zinck JA (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sens. Environ. 85: 1-20. Nield SJ, Boettinger JL, Ramsey RD (2007). Digitally Mapping Gypsic and Natric Soil Areas Using Landsat ETM Data. Soil Science Society of America Journal, 71(1): 245-252. Rao BRM, Sharma RC, Ravi Sankar T, Das SN, Dwivedi RS, Thammappa SS, Venkataratnam L (1995). Spectral Behaviour of Salt-Affected Soils. International Journal of Remote Sensing, 16(12): 2125-2136. Rosen MR (1991). Sedimentologic and geochemical constrains on the hydrologic evolution of Bristol Dry Lake, California, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 84: 229-257. Roy DP, Wulder M, Loveland T, Woodcock C, Allen R, Anderson M, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaff CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P, Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG, McCorKel J, Shuai Y, Trezza R, Vogelmann J, Wynne RH, Zhu Z (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154-172. Shaw, P., Thomas, D.S.G. (1989). Playas, pans and salt lakes. Journal of Arid environments, 184-205 Schmid T, Koch M, Gumuzzio J (2008). Application of hyperspectral imagery to soil salinity mapping,” In: G. Metternicht and J. Zinck, (Eds.), Remote sensing of soil salinization: impact on land management, CRC Press, Boca Raton, pp. 113-137. Sheng Y, Song C, Wang J, Lyons EA, Knox BR, Cox JS, Gao F (2016). Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sensing of Environment, 185: 129-141. Statistical Centre of Iran (2016). Macro results of statistical survey. http://www.amar.org.ir. Accessed 2016.