ارزیابی تغییرات محیطی در شهرستان نجف‌آباد بین سال‌های ۱۳۸۱ تا ۱۳۹۷با تأکید بر بخش کشاورزی

نویسندگان

دانشگاه اصفهان

چکیده

بخش کشاورزی ذاتاً حساس به شرایط تغییر اقلیم است و این امر موجب شده که یکی از آسیب‌پذیرترین بخش‌ها به خطرات و اثرات تغییرات محیطی باشد. هدف این پژوهش، ارزیابی تغییرات محیطی با روش توصیفی-تحلیلی در شهرستان نجف‌آباد است که داده‌ها نیز به روش پیمایشی تهیه شده است. بررسی‌های روند من-کندال نشان داد که دما طی یک دوره‌ی آماری 20 ساله دارای روند صعودی بوده است. همچنین در زمینه‌ی بارش، عدم وجود روند مشخص و کاهش بارندگی در شهرستان دیده می‌شود. بررسی‌ها نشان داد که همبستگی قوی بین برداشت از منابع آب زیرزمینی با تغییرات سطح آب زیرزمینی و نیز تأثیرات مخرب روند افزایش برداشت از منابع آب زیرزمینی در شهرستان نجف‌آباد وجود دارد. ضریب همبستگی بارش و نوسانات سطح آب زیرزمینی نشان داد که هیچ‌گونه ارتباطی میان این دو سری زمانی وجود ندارد. در این محدوده‌ی مطالعاتی، روند افت سطح آب زیرزمینی مستقل از بارش بوده و ناشی از استفاده‌ی بی‌رویه‌ی آب‌های زیرزمینی و نیز کاهش آب سطحی ورودی به منطقه است. نتایج ضریب همبستگی متقابل دو سری زمانی (افت سطح آب و هدایت الکتریکی) بیانگر همبستگی شدید این دو سری زمانی و همچنین اثرات منفی روند افت سطح آب زیرزمینی بر میزان هدایت الکتریکی آب در نجف‌آباد است. یافته‌های پوشش گیاهی نشان داد در جنوب و جنوب شرق نجف‌آباد به دلیل تغییر کاربری کشاورزان از کشت زراعت به کاشت درختان و احداث باغات روند افزایشی داشته است، اما در بخش زیادی از شهرستان روند پوشش گیاهی منفی بوده است. بررسی‌ها نشان داد که میزان اراضی زیرکشت زراعی و باغی شهرستان به شدت کاهش یافته و از تعداد شاغلین بخش کشاورزی کاسته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation environmental change in Najaf Abad County focusing on agriculture sector (2003-2019)

نویسندگان [English]

  • hamzeh rahimi
  • seyed hedayat nouri
  • sayed Abolfazl masoodian
چکیده [English]

The agricultural sector is inherently susceptible to climate change, making it one of the most vulnerable to the risks and side-effects of environmental changes. The purpose of this study is to evaluate environmental change in Najaf Abad County. The research method is descriptive-analytical and the data were obtained via the survey method. Mann-Kendall trend studies showed that the temperature had an upward trend over a statistical period of 20 years. And in the field of rainfall, there is no clear trend and a decrease in rainfall in the city. The study showed that there is a strong correlation between extraction from groundwater resources and changes in groundwater level and also the destructive effects of the process of increasing the derivation of groundwater resources in the Najafabad County. The correlation coefficient of precipitation and groundwater level fluctuations showed that there is no relationship between these two-time series. In this study area, the trend of falling groundwater level is independent of precipitation and due to the improper use of groundwater and the reduction of surface water entering the region. The results of the cross-correlation coefficient of the two-time series (water level drop and electrical conduction) indicate the strong correlation between these two-time series as well as the negative effects of groundwater level drop trend on the electrical conduction of water in Najafabad. Findings showed that in the south and southeast of Najafabad, due to the change in the use of farmers from agriculture to planting trees and gardens, vegetation has increased. But in most parts of the township, the vegetation trend has been negative. Studies have shown that the amount of agricultural and horticultural lands in the city has decreased sharply and the number of employees in the agricultural sector has decreased.

کلیدواژه‌ها [English]

  • Environmental Change
  • vulnerability
  • Agriculture
  • Najafabad County
AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T., & Lund, J. (2015). Water and climate: Recognize 621 anthropogenic drought. Nature 524, 409–411. Ayeni, A.O., Cho, M.A., Mathieu, R., & Adegoke, J.O. (2016). The local experts' perception of environmental change and its impacts on surface water in Southwestern Nigeria, Environmental Development, 17, 33-47. Beniston, M. (2016). Environmental Change in Mountains and Uplands, Routledge. Butler, J.R.A., Suadnya, W., Puspadi, K., Sutaryono, Y., Wise, R.M., & et al. (2014). Framing the application of adaptation pathways for rural livelihoods and global change in eastern Indonesian islands, Global Environmental Change, 28, 368-382. Campbell, D., Barker, D., & McGregor, D. (2010). Dealing with drought: Small Farmers' and environmental hazards in southern St: Elizabeth, Jamaica. Applied Geography, 31(1), 146-158. Easterling, D.R., Evans, J., Groisman, P.Y., Karl, T., Kunkel, E., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: a brief review. Bull. Am. Meteorol. Soc. 81, 417–425. Enríquez-de-Salamanca, A., Díaz-Sierra, R., Martín-Aranda, R.M., & Santos, M.J. (2017). Environmental impacts of climate change adaptation, Environmental Impact Assessment Review, 64, 87-96. Ensor, J., & Berger, R. (2009). Understanding Climate Change Adaptation: Lessons from Community-based Approaches. Practical Action Publishing, Rugby, UK. Eriksen, S., Aldunce, P., Bahinipati, C.S., Martins, R.D.A., Molefe, J.I., Nhemachena, C., O’Brien, K., Olorunfemi, F., Park, J., Sygna, L., & Ulsrud, K. (2011). When not every response to climate change is a good one: identifying principles for sustainable adaptation. Climate and Development 3, 7–20. Felfelani, F., Wada, Y., Longuevergne, L., & Pokhrel, Y.N. (2017). Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE. J. Hydrol. 553,105–118. https://doi.org/10.1016/J.JHYDROL.2017.07.048. Gaillard, G. & Tendall, D.M. (2015). Environmental consequences of adaptation to climate change in Swiss agriculture: An analysis at farm level, Agricultural Systems, 132, 40-51. Gandomkar, A. 2011. Investigating the precipitation and temperature change procedure in Zayanderood watershed, World Academy of Science, Engineering and Technology (WASET) 5, 43-47 Golian, S., Mazdiyasni, O., & AghaKouchak, A. (2015). Trends in meteorological and agricultural droughts in Iran. Theor. Appl. Climatol. 119, 679–688. Hashemi, H., Uvo, C.B., & Berndtsson, R. (2015). Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas. Hydrol. Earth Syst. Sci. 19, 4165– 4181. https://doi.org/10.5194/hess-19-4165-2015. Khazaeia, B., Khatami, S., Alemohammad, S. H., Rashidi, L., Wue, C., Madani, K., Kalantari, Z., Destouni, G., & Aghakouchak, A. (2019). Climatic or regionally induced by humans? Tracing hydro-climatic and landuse changes to better understand the Lake Urmia tragedy, Journal of Hydrology, 569: 203-2017. Madani, K. (2019). NASA Goddard Institute for Space Studies, Anomalies shown relative to the average temperature at each location between, 1951-2019. Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s Socio-economic Drought: Challenges of a Water- Bankrupt Nation. Iran. Stud. 49, 997–1016. Maponya, Ph., & Mpandeli, S. (2012). Climate Change and Agricultural Production in South Africa: Impacts and Adaptation options. Journal of Agricultural Science, 4(10), 48-60. Mbowa, C., Mertz, O., Diouf, A., Rasmussen, K., & Reenberg, A. (2008). The history of environmental change and adaptation in eastern Saloum–Senegal—Driving forces and perceptions, Global and Planetary Change, 64, 210-221. Mehran, A., AghaKouchak, A., Nakhjiri, N., Stewardson, M.J., Peel, M.C., Phillips, T.J., Wada, Y., & Ravalico, J.K. (2017). Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability. Sci. Rep. 7, 62-82. https://doi.org/10.1038/s41598-017-06765-0. Mohan, C., Western, A.W., Wei, Y., & Saft, M. (2018). Predicting groundwater recharge for varying land cover and climate conditions – a global meta-study. Hydrol. Earth Syst. Sci. 22, 2689–2703. https://doi.org/10.5194/hess-22-2689-2018. Mortimore, M., Ba, M., Mahamane, A., Rostom, R.S, Serra Del Pozo, P., & Turner, B. (2005). Changing systems and changing landscapes: measuring and interpreting land use transformations in African drylands. Geografisk Tidsskrift. Danish Journal of Geography 105, 101–120. Pachauri, R.K., & Meyer, L.A. (2014). IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1–151. Patt, A.G., & Schröter, D. (2008). Perceptions of climate risk in Mozambique: implications for the success of adaptation strategies. Glob. Environ. Chang. 18, 458–467. Pokhrel, Y.N., Felfelani, F., Shin, S., Yamada, T.J., & Satoh, Y. (2017). Modeling large-scale human alteration of land surface hydrology and climate. Geosci. Lett. 4, 10-22. Qin, Z., Storozum, M., Liu, H., Zhang, X., & Kidder, T. R. (2019). Investigating environmental changes as the driving force of agricultural intensification in the lower reaches of the Yellow River: A case study at the Sanyangzhuang site, Quaternary International, 521, 25-34. Schall, D., Lansing, D., Leisnham, P., Shirmohammadi, A., Montas, H., & Hutson, T. (2018). Understanding stakeholder perspectives on agricultural best management practices and environmental change in the Chesapeake Bay: A Q methodology study, Journal of Rural Studies, 60, 21-31. Sklorz, S., M. Kaltofen and B. Monninkhoff. 2015. Groundwater Model for the Zayandeh Rud Catchment. Integrated Water Resource Management in Isfahan, Iran, BMBF Project, DHI-WASY. Tasi, H.M. (2009). Co-evolution and Beyond: Landscape Changes in the Penghu Aechipelago (the Pescadores), Taiwan. Asia-Pacific From 44, 193-213. Vanackera, V., Govers, G., Poesenb, J., Deckersc, J., Derconc, G., & Loaiza G. (2003). The impact of environmental change on the intensity and spatial pattern of water erosion in a semi-arid mountainous Andean environment, Catena 51, 329– 347. Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., & Davies, P.M. (2010). Global threats to human water security and river biodiversity. Nature 467, 555–561. Wang, G.H., & Chang, L.F. (2009). Urban peripheral land use and ground surface coverage changes: driving forces and environmental change issues. Urban Planning, 36, 361-385.