تحلیل توأم ریسک خشک‌سالی‌های هواشناسی (مطالعه‌ی موردی: شرق ایران)

نویسندگان

1 دانشگاه ارومیه

2 دانشگاه شهرکرد

چکیده

خشک‌سالی‌ها پدیده‌‌های حدی هستند که بر اساس خصوصیات تداوم در زمان و با توجه به اثرات مکانی آن‌ها توصیف می‌شوند و می‌توانند در هر وضعیت اقلیمی رخ دهند. شناخت و رفتار خشک‌سالی‌ها که ارتباط تنگاتنگ و بی‌واسطه‌ای با مدیریت منابع آب دارد، از اهمیت ویژه‌ای برخوردار است. هدف اصلی این مطالعه، ارزیابی ریسک خشک‌سالی با استفاده از توابع مفصل، در تحلیل دومتغیره پدیده‌ی خشک‌سالی در شرق کشور است. بدین منظور، ابتدا با استفاده از شاخص بارش استانداردشده‌ی اصلاحی (SPImod) خصوصیات خشک‌سالی شامل شدت و مدت استخراج گردید. در ادامه جهت ارزیابی ریسک خشک‌سالی و تحلیل دومتغیره‌ی آن، عملکرد 9 تابع مفصل کلایتون، علی-میخائیل-حق، فارلی-گامبل-مورگنسترن، فرانک، گامبل، گامبل-هوگارد، پلاکت، فیلیپ-گامبل و جوئی برازش بر داده‌های شدت و مدت خشک‌سالی مورد آزمون قرار گرفت. جهت تشخیص تابع مفصل برتر از معیارهای آکائیکه، حداکثر درست‌نمایی و ضریب نش-ساتکلیف استفاده گردید. نتایج نشان داد که توابع توزیع گاما و نمایی به‌­عنوان توابع توزیع حاشیه‌ای برتر به ترتیب برای متغیرهای شدت و مدت خشک‌سالی شناسایی شدند و ضریب نش-ساتکلیف در محدوده‌ی 76/0 تا 99/0، میانگین مربعات خطا در محدوده‌ی 007/0 تا 034/0، جهت تعیین تابع مفصل برتر به دست آمد که تابع مفصل جوئی تابع برتر برای ایجاد توزیع دومتغیره در منطقه‌ی موردمطالعه شناخته شد. همچنین نتایج حاصل از ارزیابی ریسک خشک‌سالی با استفاده از دوره‌ی بازگشت توأم نشان داد که بیش‌ترین خطر ریسک مربوط به ایستگاه‌های بجنورد، سبزوار، تربت حیدریه و مشهد است؛ به‌طوری‌که در ایستگاه سبزوار حدود 53 درصد از کل ماه‌ها در طی دوره‌ی آماری خشک بوده است و برای ایستگاه بجنورد حدود 55 درصد است. نتایج حاصل از تحلیل ریسک بر مبنای دوره‌ی بازگشت و توابع مفصل می‌تواند اطلاعات مفیدی را در اختیار برنامه‌ریزان منابع آب، مسائل زیست‌محیطی، کشاورزان قرار دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Joint Risk Analysis of Meteorological Droughts (Case Study of East Iran)

نویسندگان [English]

  • zabiholah khani temeliyeh 1
  • hossien rezaie 1
  • Rasoul Mirabbasi najafabadi 2
1
2
چکیده [English]

Droughts are extreme phenomena that are described based on the characteristics of continuity in time and according to their spatial effects and can occur in any climatic situation. Recognition and behavior of droughts, which are closely and directly related to water resources management, are of particular importance. The main purpose of this study is to assess the risk of drought using Copula functions in the bivariate analysis of drought in the east of the country. For this purpose, drought characteristics including intensity and duration were extracted using modify standardized precipitation index (SPImod). To assess the risk of drought and analyze its two variables, the performance of nine copula functions of Clayton, Ali-Michael-Haq, Farli-Gumble-Morgenstern, Frank, Gumble, Gumble-Hoggard, Plackett, Filip-Gumble and Joe fits the intensity data and Drought duration was tested. Akaike criteria, maximum likelihood, and Nash-Sutcliffe coefficient were used to identify the superior joint function. The results showed that gamma and exponential distribution functions were identified as superior margin distribution functions for the variables of intensity and duration of drought, respectively, and the Nash-Sutcliffe coefficient ranged from 0.76 to 0.99, and the mean square error ranged from 0.007 to0 034., to determine the superior copula function, it was obtained that the copula function of the superior function was known to create a bivariate distribution in the study area. Also, the results of drought risk assessment using the joint return period showed that the highest risk is related to Bojnourd, Sabzevar, Torbat Heydariyeh, and Mashhad stations, so that Sabzevar station was dry about 53% of the total months during the statistical period and for Bojnourd station is about 55%. The results of risk analysis based on return period and copula functions can provide useful information to planners of water resources, environmental issues, farmers.

کلیدواژه‌ها [English]

  • Copula function
  • Two-Variable Analysis
  • Return period
  • Drought Risk
  • SPImod index
Akaike, H. (1974). A new look at Statistical Model Idenification. IEEE Transactions on Automatic Control, 19: 716- 723. Ayantobo, O.O., Li, Y., Song, S. (2019). Copula-based trivariate drought frequency analysis approach in seven climatic sub-regions of mainland China over 1961–2013. Theoretical and Applied Climatology, 137: 2217- 2237. Ayantobo, O. O., Li, Y., & Song, S. (2019). Multivariate drought frequency analysis using four-variate symmetric and asymmetric Archimedean copula functions. Water Resources Management, 33(1), 103-127. Chen, L. Singh, V.P., Guo, S., Mishra, A.K., Guo, J. (2013). Drought analysis using copulas. Journal of Hydrologic Engineering, 18(7): 797–808. Ganguli, P., Reddy, M.J. (2012(. Risk assessment of droughts in Gujarat using bivariate copulas, Water Resources Mannagement, 26: 3301-3327. Haro, D., Abel, S., Javier, P., Joaquín, A. (2014). Methodology for drought risk assessment in within- year regulated reservoir systems: Application to the Orbigo, River System (Spain). Water Resources Management, 28(11): 3801-3814. Hou, W., Yan, P., Feng, G., Zuo, D. (2021). A 3D Copula Method for the Impact and Risk Assessment of Drought Disaster and an Example Application. Frontiers in Physics, 9, 156. Iuliana Bunea, A. (2019). Drought risk assessment by means of drought hazard and vulnerability indices in Muntenia Region. RISCURI ŞI CATASTROFE, NR. XIX, 25: 73-84. Jiang, S., Yang, R., Cui, N., Zhao, L., (2018). Analysis of drought vulnerability characteristics and risk assessment based on information distribution and diffusion in Southwest China. Atmosphere, 9(7): 239. Joe, H., (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall. 399 pp. Kao, S.C., Govindaraju, R.S. (2010(. A copula-based joint deficit index for droughts. Journal of Hydrology, 380: 121-134. Li, J., Bardossy, A., Guenni, L., Liu, M. (2011). A copula based observation network design approach. Environmental Modelling & Software, 26 (11): 1349-1357. Maeng, S.J., Azam, M., Kim, H.S., Hwang, J.H. (2017). Analysis of changes in spatio-temporal patterns of drought across South Korea. Water, 9, 679. Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., Soleimani Sardoo, F., Miglietta, M.M. (2019). Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP), Meteorological Application, 27(1): 1-20. Mirabbasi, R., Fakheri-Fard, A., Dinpashoh, Y. (2012). Bivariate drought frequency analysis using the copulamethod. Theoretical and Applied Climatology, 108: 191–206. Nash, J.E., and Sutcliffe, J.V., (1970). River flow forecasting through conceptual models. A discussion of principles. Journal of Hydrology, 10: 282–290. Nelsen, R.B., (2006). An Introduction to Copulas, Springer, New York. 269 pp. Ramezani, Y., Nazeri Tahroudi, M., Ahmadi, F. (2020). Analyzing the droughts in Iranand its eastern neighboring countries using copula functions. Quarterly Journal of the Hungarian Meteorological Service, 123(4): 435-453. Reddy, M.J., Ganguli, P. (2013). Spatio-temporal analysis and derivation of copula-based intensity-area-frequencycurves for droughts in western Rajasthan (India). Stochastic Environmental Research and Risk Assessment, 27: 1975–1989. Salvadori, G., De Michele, C. (2004). Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resources Research, 40:W12511. Shiau, J.T. (2003). Return period of bivariate distributed hydrological events. Stochastic Environmental Research and Risk Assessment, 17(1–2): 42–57. Shiau, J.T.)2006(. Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20: 795–815. Shiau, J.T., Modarres R. (2009(. Copula-based drought severity-duration-frequency analysis in Iran. Meteorological Applications, 16: 481–489. Sklar, A. (1959.) Fonctions de répartition à n dimensions et leurs marges, Publications de l'Institut de Statistique de L'Université de Paris, 8: 229-231. Suroso, S., Bárdossy, A. (2018). Investigation of asymmetric spatial dependence of precipita using empirical bivariate copulas. Journal of Hydrology, 565: 685- 697. Tamara Henry, S. (2020). Comparison of drought indices in the Rio Minho Watershed, Jamaica. Journal of Geografia (Londrina) 29(1): 125- 139. Tingsanchali, T., Piriyawong, T. (2018). Drought Risk Assessment of Irrigation Project Areas in a River Basin. Engineering Journal, 22(1): 280-286. Vergni, L., Todisco, F., Bruno, D. L., Mannocchi, F. (2019) .Bivariate analysis of drought duration and severity for irrigation planning. Agricultural Water Management, 229: 105926. Wu, C., Yeh, P. J. F., Chen, Y. Y., Lv, W., Hu, B. X., Huang, G. (2021). Copula-based risk evaluation of global meteorological drought in the 21st century based on CMIP5 multi-model ensemble projections. Journal of Hydrology, 598, 126265. Zhang, L., Wang, Y., Chen, Y., Bai, Y., Zhang, Q. (2020) Drought risk assessment in Central Asia using a probabilistic copula function approach. Water, 12, 421. Zhao, P., Lü, H., Fu, G., Zhu, Y., Su, J., & Wang, J. (2017). Uncertainty of hydrological drought characteristics with copula functions and probability distributions: a case study of Weihe River, China. Water, 9(5), 334.